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Abstract-This paper presents an analysis for simulating melting heat transfer around a moving, horizontal, 
cylindrical heat source. Motivated by the experimental observations, the melt domain is divided into two 
regions, namely, the close-contact region and the melt pool region. Two mathematical models are for- 
mulated and solution procedures are developed accordingly. The temperature and the flow fields in the 
two regions are calculated for a constant surface temperature heat source and the resulting velocity of the 
source and motion and shape of the interface are determined. The effects of the prescribed surface 
temperature of the source and its density, as well as influence of natural convection in the melt pool. are 
investigated and reported. The predicted melt flow structure and the motion and shape of the solid-liquid 
interface are found to be in good agreement with the experimental observations when natural convection 

in the melt is included in the model. 

1. INTRODUCTION 2. ANALYSIS 

IF A SOURCE releases heat in excess of a certain mini- A schematic diagram of the physical problem con- 
mum that its surroundings can conduct, the sur- sidered is shown in Fig. l(a). A horizontal, cylindrical 
roundings will eventually melt and the source will heat source of radius R is initially placed in the solid 
start moving in the melt in the direction of the net phase-change material which is at its fusion tem- 
forces acting on it (gravitational, buoyancy, shear perature, 7’,,,. At time t = 0, a constant surface tem- 
forces. etc.). This problem arises in nature and tech- perature T, is imposed on the surface of the source 
nology in such diverse fields as materials processing and the melting begins. The difference between the 
[l], spacecraft and nuclear technology [2] and geo- 
physics [3]. In the field of nuclear technology, this 
problem has two important applications. One appli- 
cation is the ‘self-burial’ process, a nuclear waste dis- 
posal scheme which suggests placing the radioactive 
waste materials in various cavities in the ground [4] 
or on the arctic ice cap [5]. Another application is the 
reactor core ‘melt-down’ process also referred to as g+ 
the ‘China Syndrome’ [6, 71. 

Phase-change heat transfer problems have been 
extensively studied during the last decade. The prob- 
lem considered here, however, has not received proper 
and adequate attention until recently [8-lo]. Emer- 
man and Turcotte [8] have formulated an approximate 
mathematical model for migration of a hot, rigid 
sphere which melted its way through a solid. Moallemi 
and Viskanta [9] have reported experiments with a 
horizontal, cylindrical heat source which descended 
in response to gravity while melting the surrounding 
solid. 

In this paper, a mathematical model is formulated 
for the melting heat transfer problem around a 
moving heat source. Taking advantage of the experi- 
mental observations [9], the melt domain is divided 
into two regions, and numerical solution procedures 
are developed for both. The results for a typical set of 
parameters are presented and general features of the (0) (bl 

solution are described. The effects of different govern- 
ing parameters of the problem are also discussed. 

FIG. 1. Schematic diagram of the problem (a) and coordinate 
systems in regions I and II(b). 
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NOMENCLATURE 

Fo Fourier number, m/R2 (x*. _v*) 
G(x, y, t) instantaneous interface position 

Fd$;nsionless coordinates, (x, y)/R, 

function, Fig. 1 

G&X, J’) position function of the surface of 

the source 
Greek symbols 

9 gravitational constant 
A dimensionless melt layer thickness in 

h, latent heat of fusion region I, S/R 

ii unit vector normal to the interface Ao dimensionless thickness of the melt 

Pr Prandtl number, v/a 
film at C$ = 0” 

6 
P pressure 

melt layer thickness in region I 

I, 

: 
heat flux 

0 dimensionless temperature, 

radius of the heat source (T- T,)I(T,- T,) 

Ra Rayleigh number, /lgR3(Tw- T,)/ctv P density 

Re local Reynolds number, uR/v PH density of the heat source 

Ste Stefan number, c,( T, - T,,,)/h, 
; 

shear stress 

temperature 
circumferential angle, see Fig. l(b) 

t time 6 interface angle, Fig. l(b). 

t* dimensionless time, Fo*Ste*Pr 

G dimensionless heat source velocity, Subscripts 

U,R/V B boundary plane between regions I 

u velocity vector with respect to the and II 

heat source I interface 

(u*, v*) dimensionless velocity components, S solid 

uR/v, oR/v, Fig. 1 W surface of the heat source. 

densities of the source and the melt is assumed to be 
large enough to produce a continual descent of the 
source. The solid-liquid interface is assumed to be a 
sharply defined surface (i.e. melting occurs precisely 
at T,,,). It is also assumed that melt flow is laminar 
and two-dimensional. The physical properties are 
assumed to be constant. except for the density in the 
buoyancy term (Boussinesq approximation). 

The problem as posed here has two features that 
require special treatment in order to obtain realistic 
results with reasonable cost. First is the fact that the 
position of solid-liquid interface is not known apriori 

and is to be determined as part of the solution. The 
second feature which arises from the descent of the 
source is the fact that the velocity and acceleration of 
the source are also not known a priori and are to be 
found as part of the overall solution. The experimental 
observations [9] are employed to formulate a realistic 
model and to develop a solution procedure for over- 
coming this difficulty. 

The foremost finding of the experimental results is 
the fact that the physics of the problem divides the 
melt domain into two distinct and different regions- 
each with its own scale, transient period and con- 
trolling process. Therefore, to take full advantage of 
the situation, two different sets of assumptions are 
adapted for the two regions, as shown in Fig. l(b), and 
two set of formulations (each with its own solution 
procedure) are developed. Of these two regions, region 

I refers to the part of the melt domain under the heat 
source where 6/R cc 1, and region II is rest of the melt 

domain. Experimental results [9] also indicated that 
the heat source velocity attains its quasi-steady, con- 
stant value soon after initiation of melting, and this is 
assumed to be the case here. 

In addition to the general assumption stated earlier 

and inferred from experimental observations [9], in 
region I it is assumed that: (1) quasi-steady state is 
attained with respect to the heat source, or a/at = 0; 

(2) the source and the solid are separated by a very 
thin layer of melt, or 6/R << 1; and (3) boundary-layer 
approximations are valid for the melt flow in the thin 
film layer. All of the above assumptions are well 
justified on the basis of the experimental data [9]. 

With respect to the coordinates systems fixed to the 
heat source, Fig. l(b), the governing equations of the 
problem take the following dimensionless forms 
(the asterisks denoting dimensionless quantities are 
dropped for clarity): 

au+!?!=0 
ax ay (1) 

Steg+(u*V)u= --g+g+” 
w 

+ (RalPr)@,/d@ (2) 
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Sfrg+(“.V)D= _dp+a’v +c! 
ay ax2 ay2 

+(w~~)(g,/d@ (3) 

Note that C$ = x due to nondimensionalization, A’ is 
dA/d4, and 6 is the interface angle as shown in Fig. 
l(b). The motion of the heat source is governed by 
Newton’s second law of motion and is transformed 
to 

Ste:+(n.V)@ = j$g+g]. (4) P_~Y;;,[S’r@COS~+~.Sin9)d~ 

P 0 

In region I the underlined terms are dropped accord- 
ing to the assumptions stated above. To ensure the 
continuity of the solution, the boundary plane 
between the two regions, 4 = &, is placed such that 
the terms eliminated in the formulation of region I are 
still negligible in region II. Therefore, the formulation 
of region I is implemented as far as the following 
criteria are valid: 

$J < n/2, 6(+)/R 6 0.1 and u(x, y) > 0. (5) 

The boundary conditions in dimensionless form are 
the following: at the heat source surface (y = 0 in 

region I Jw = 0 in region II) 

u=O and @=I. (6) 

At the solid-liquid interface [y = A(x) in region I and 
G(x, y, t) = 0 in region II] 

u= -uo and 0 = 0 (7) 

and on the symmetry line (x = 0) 

u = 0 and a/ax= 0. (8) 

No other boundary conditions are required, as the 
governing equations in region I are parabolic in form 
(in u and 0) since the shear stress and heat diffusion 
along the dominant flow direction x have been 
neglected. The profiles of the dependent variables and 
the melt thickness calculated at the boundary plane 
of the two regions is used by the mathematical model 
of region II as boundary values. Thus, at C$ = & 

u = II, and 0 = 0,. (9) 

The energy balance equation at the interface has the 
following dimensionless form 

g = [g - (~)u~~vG]/pG~. (lo) 

In region I, with the interface position G = y-A(4),. 
equation (IO) reduces to 

(1 +A’2)g =~ =$~cos& (11) 
Y 

1 (12) 

where Ap = pH - p. The integral has been separated 
into two parts to emphasize the fact that knowledge 
of the pressure and shear acting on the source in both 
regions is required in the force balance equation. 

3. METHOD OF SOLUTION 

The two mathematical models developed for the 
two regions are coupled not only at the boundary 
plane of the two regions but also through the source 
velocity and the force balance equation, equation (12), 
on the heat source. Since analytical solutions do not 
appear possible, from the computer memory storage 
viewpoint, it is desirable to develop a solution pro- 
cedure such that the two models could be solved one 
after the other, rather than simultaneously. The model 
presented for region II requires the profiles of the 
dependent variables at the boundary plane (as boun- 
dary conditions at 4 = &) and the source velocity, 
which appears in the velocity boundary condition as 
well as the energy balance equation at the interface. 
Therefore, region II is solved after the solution for 
region I has been obtained. To overcome the difficulty 
of coupling the two models through the force balance 
equation, the best procedure is to treat the inde- 
pendent parameter Ap/p as a dependent variable to 
be determined as part of the overall solution. A new 
independent variable is introduced into the governing 
equations of region I. The only condition for choosing 
this new parameter is that it must have a one-to-one 
relationship with Ap/p. From the numerical point of 
view, the best choice is the melt thickness at the lower 
stagnation point of the source, AO. Treating A0 as a 
parameter, CJg may be calculated at C#J = 0” from 
equation (11) to yield 

ao 

[ I 1 Ste - uz = ay y’Ao Pr (13) 

after setting A’(0) = 0 and 4 = 0 due to symmetry. 
For 4 > 0, knowing U& equation (11) is used to 
determine the melt layer thickness, A,,. 

With the above change of variables, the model for 
region I may be solved first and this provides the 
necessary data (i.e. Ug and boundary conditions at 
4 = &) for the model in region II. After solving the 
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model for the two regions, the integrals in the force 
balance equation, equation (12), are evaluated to yield 
Ap/p. The solution procedures for the two regions are 
described below. 

3.1. Solution procedures for region I 
The momentum and energy equations in region I. 

equations (2H4), after dropping the underlined 
terms, are parabolic in form and are solved by a com- 
putational scheme which marches along the dominant 
flow direction x. The numerical marching-integration 
procedure employed has been successfully applied to 
close-contact melting with a constant surface heat 
flux heat source [lo, 111 where further details of the 
method may be found. 

3.2. Solution procedure for region II 
In this region, the model equations (2t(4) are tran- 

sient and elliptic in form. The domain-whose boun- 
dary changes with time-is irregular and is also part 
of the solution. To overcome the difficulties associated 
with the timewise changing melt domain the ‘adaptive 
grid generation’ technique [12] is employed. The 
important advantages of this technique are that: (1) it 
can conform the shape of the moving solid-liquid 
interface accurately; and (2) the interior nodes may 
move adaptively in response to the enlargement of the 
melt domain and also development of the solution 
with time. By using a weighting function proportional 
to (VOjO)‘, the grid points are forced to concentrate 
near the source and the interface where the tem- 
perature gradients are largest. The technique is 
adequately described in the original publication [12] 
and also in a review article [13]; therefore, only its 
implementation in the solution procedure is briefly 
explained here. 

The formulation of the solution method is based on 
control volume approach [14] in general curvilinear 
coordinates. In the flow field calculations the velocity 
components are retained in the physical coordinates 
and a non-staggered grid is employed (i.e. the velocity 
components and pressure are calculated and stored at 
the same nodes). This practice eliminates most of the 
geometric complications as only the fluxes at the faces 
of the control volume are transformed to the ‘imagi- 
nary’ plane [15], and the geometric coefficients are 
calculated for only one set of control volumes. 
However, it makes higher-order interpolations necess- 
ary for both the fluxes and the pressure [14] so that 
stable velocity and pressure fields can be obtained. 
For flux discretization and interpolation, the ‘Flux- 
Spline’ scheme [ 161 and for pressure interpolation the 
‘PC?’ scheme [ 171 are used. The solution method along 
with the adaptive grid generating technique has been 
successfully applied to a similar problem [lo] where 
further details about the method may be found. 

The problem formulation in region II is based 
on the assumption that the heat source velocity is 

constant. From the experimental observations [9], this 
is only true after the boundary layer of the newly 
melted material is fully established over the heat 
source. Therefore, the above formulation should be 
used starting at a time greater than some to and an 
assumed interface function G(x,y, to) such that the 
above condition is satisfied. As a compromise between 
accuracy and computational effort, a grid system con- 
taining 21 x 31 nodal points is used. The initial tem- 
perature and flow fields assumed are the steady-state 
solution of the same problem but with a fixed interface 
(i.e. no melting). The fact that the motion of the inter- 
face is slow (compared with the melt velocity in the 
pool) justifies this choice. The error associated with 
the choice of initial domain and field is expected to 
vanish as the melt domain increases in size. 

The computational model is based on the assump- 
tion that there is a small time lag between the heat 
transferred to the interface and the interface motion 
(due to melting and also motion of the heat source). 
The total dimensionless heat flux at the interface 
calculated from the temperature and flow field solu- 
tion at time t is used to determine the interface 
position at time t +At from equation (lo), withproper 
spline interpolation to preserve the interface shape. 
To avoid errors associated with the time lag between 
heat transferred to the interface and the resultant 
interface displacement, the computations were 
started with At = 5 s and the time increment was 
increased to 10 s at later times into simulation (At* = 
0.011 and 0.022, respectively, for Ste = 0.0724). 
At any time step, the solution was considered con- 
verged if 

@+‘(i,j)-W(i,j) 

max[@“+‘(i,i)] < lo-’ (14) 

where k is the iteration loop counter and CD is u, u or 
0. Additional details of the solution procedure which 
is very similar to SIMPLER [14] may be found else- 
where [lo]. 

4. RESULTS AND DISCUSSION 

In this section the numerical results for the tem- 
perature and velocity fields in the melt in regions I 
and II are presented. For either of the two regions, 
first the results for a typical set of parameters are 
discussed and general features of the problem are 
described. This is then followed by a discussion of 
the effects of different governing parameters of the 
problem; namely, Ste, Ra, Pr, A,, in region I and 
natural convection in region II. 

4.1. Results in region I 
Representative results in region I were calculated 

with the following set of parameters: Ste = 0.0724, 
Ra = 286,000, Pr = 55.6 and A0 = 0.006. Figure 2 
illustrates the temperature profiles across the melt- 
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FIG. 2. The melt temperature profiles along the channel. 

film at different angular positions along the channel. 
Close to the lower stagnation point (4 = 0”) the melt- 
film thickness is very small and the mass flow rate of 
the melt is also small, thus, melting is due to con- 
duction heat transfer across the melt film and tem- 
perature distribution across the melt layer is linear. 
The growth of the melt-film thickness prevented high 
melt velocities and heat conduction dominated melt- 
ing is preserved almost up to 90”. The fact that the 
Reynolds number (based on the local melt thickness 
and melt velocity) never exceeded 0.33, for the set 
of parameters specified, confirms the important role 
played by conduction along the channel. For the range 
of parameters examined (i.e. 0.035 < Ste < 0.11, 
0.003 < A0 < 0.009,O < Ra < 429,000 and Pr = 55.6 
and 11 .O), the maximum deviation of the temperature 

profiles from a linear temperature distribution never 
exceeded 5 % . 

The tangential melt velocity profiles (scaled by the 
source velocity, U,,) at different angular positions 
along the melt channel are presented in Fig. 3. The 
first point to note in the figure is the way the tangential 
melt velocity develops along the film channel (i.e. 
the local maximum velocity increases first and then 
decreases, with absolute maximum of 126 U$ occur- 
ring at 4 = 46.1”). This may be explained by simul- 
taneous consideration of the rate of growth of the 
melt-film thickness and the entrainment rate of the 
melt into the channel. 

The normal melt velocity at the solid-liquid inter- 
face is a measure of the entrainment and decreases 
with 4 [it is proportional to cos 4, equation (7)]. Near 

0 2 4 6 6 

y/k 

FIG. 3. The tangential velocity profiles of the melt along the channel. 
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4 = O”, the entrainment of the melt is high enough to 
compensate for the widening of the melt film and also 
to cause an increase in the tangential melt velocity. 
Whereas, further along the channel, the rate of growth 
of the melt film becomes large enough not only to 
compensate for entraining melt but also to decelerate 
the melt flow. For the range of parameters examined, 
the location of the maximum average melt velocity 
was found to be between 44.7” and 47.3”, which 
is in good agreement with $J = 45’ predicted by the 
approximate model [9. lo]. 

than measurements). The difference may be attributed 
to the simplification of the approximate model and 
also the idealizations of the experiments. 

Table 1 presents the dimensionless parameters and 
summary of the results of the numerical simulations 
with different values of A0 and Ste, Ra and Pr. First 
n-octadecane is chosen as the phase-change material 
(Pr = 55.6). For all the cases examined, the marching- 
integration was performed up to & = 90” as neither 
of the last two criteria of equation (5) was violated 
(i.e. melt layer thickness remained less than 10% of 
the radius of the source and no flow recirculation 
occurred up to 4 = 90”). 

The values of pressure at 4 = & [with respect to 
~(0”) = 0] and the first integral in equation (12) are 
calculated in region I and are used in calculations for 
region II in order to determine Ap/p. To compare the 
numerical results with the approximate solution [9, 
IO], the value of Ap/p may be calculated by assuming 
thatp(4) =p(4J and z,(4) = 0 for & < 4 < A which 
is also assumed in deriving the approximate solution 
[9, lo]. With these assumptions and for different values 
of A0 and Ste, the effective densities of the heat source 
are calculated and are presented in Table 1. The cal- 
culated values of Ap/p fall between the approximate 
analytical predictions and experimental results [9, lo] 
(i.e. 616% higher than predictions and 10-l 5% lower 

The angular variation of A/A,, calculated by the 
numerical scheme for different values of Ste and A0 is 
presented in Fig. 4. The figure shows that most of 
growth in the melt film thickness takes place in the 
last 15” of the channel. Up to rj w 50”, the dependence 
of A(4) on Ste and Ap/p remains exactly the same as 
that of A0 as A/A,, is independent of Ste for all A,s. 
For this part of the melt channel, the ratio of the heat 
fluxes qE(@)/qto at the surface of the source at 4 and 
O”, respectively, is also independent of Ste and A,,. For 
4s larger than 50” the effect of A,, on A/A0 and 
qL/qLo gradually becomes evident, but A0 and qt,” 
still carry the influence of Ste and Ap/p (i.e. ldentlcal 
results for Ste = 0.0358, 0.0724 and 0.11). The bulk 
average temperature of the melt was calculated along 
the channel and found to be constant (at least for 
0 < 4 ,< SO’) and close to the mean temperature, 
0 = 0.5. This finding confirms the relatively minor 
role played by convection compared to conduction 
heat transfer. The maximum Reynolds numbers 
which always occurred at 4 = 90” are presented for 
different runs presented in Table I and are all less 
than unity (P&let number less than 55), which again 
confirms the small effect of convection heat transfer 
in the channel. 

Table 1 also illustrates the effects of the buoyancy 
force on the solution. This can be done by comparing 
the results for Ra = 286,000 with those in which 
Ra = 0. The heat source velocity is defined 4 = 0” and 
is essentially governed by conduction heat transfer 
between the source and the solid; therefore, it is not 
affected by the neglect of the buoyancy force in the 

Table 1. Dimensionless parameters and results for different values of Ste, Ao. Ra and Pr 

Variable 
changed A0 Ste RU Pr uot 4B 44~~) P(4d 4%43 Remaxt WPI 

4 0.003 0.0724 286,000 55.6 0.4234 90” 0.02712 -4.78 x IO’ 0.9654 0.6465 20.45 
0.006§ 0.0724 286,000 55.6 0.2117 90” 0.04343 -3.03 x 106 0.965 1 0.3260 1.305 
0.009 0.0724 286,000 55.6 0.1411 90” 0.05724 -9.03 x 105 0.9645 0.2191 0.2616 

Ste 0.006 0.0358 143,000 55.6 0.1060 90” 0.04342 - 1.52 x lo6 0.9824 0.1633 0.6534 
0.006§ 0.0724 286,000 55.6 0.2117 90” 0.04343 -3.03 x 106 0.9651 0.3260 1.305 
0.006 0.0110 429,000 55.6 0.3177 90” 0.04342 -4.54 x 106 0.9482 0.4893 1.958 

Ra 0.006 0.0724 0 55.6 0.2117 90” 0.04360 -3.07 x 106 0.9677 0.3284 1.313 
O.OOQ 0.0724 286,000 55.6 0.2117 90” 0.04343 - 3.03 x 106 0.9651 0.3260 1.305 

Prll 0.006 0.0504 18,800 11.0 0.7505 90” 0.04345 - 1.07 x 10’ 0.9758 1.156 0.3788 
0.006 0.0358 143,000 55.6 0.1060 90” 0.04342 -1.52x lo6 0.9824 0.1633 0.6534 

t Remax = Um,,(ddA(44. 
$ Calculated with the assumption that p(d) = ~(4s) and ~(4) = 0 for & < 4 < 180”. 
8 Standard case. 
11 Results for water and n-octadecane, both with r,- T,,, = 4°C. 
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FIG. 4. Angular variation of A/A0 and qt/q$, for Ste = 0.0358,0.0724 and 0.110. 

melt. Overall the effect of buoyancy in the melt is of the dependent variables at 4 = +a taken from the 
concluded to be negligible as the melt layer thickness solution of the problem in region I for the same set of 
increased by less than 0.4% at 90” and the effective model parameters. The initial velocity and tem- 
density of the source increased by about 0.6% when perature fields are also presented in Fig. 5 in the form 
Ra was set to zero. of streamline and isotherm contours. 

The general features of the problem in this region 
did not change when ice (Pr = 11.0) was used as 
phase-change material instead of n-octadecane. The 
results of two computer simulations, both with 

T,, - T, = 4°C for these two phase-change materials 
are compared in Table 1. An examination of the 
results reveals that the solutions are very similar and 
the calculated value of Ap/p is about 11% greater than 
that predicted by the approximate solution [9, Ill. 

4.2. Results for region II 

The representative results in region II were cal- 
culated for the standard set of parameters 
(Ste = 0.0724, Ra = 286,000, A,, = 0.006 and 
Pr = 55.6) and an assumed initial melt pool as shown 
in Fig. 5 with the melt layer thickness and the profiles 

Figure 6 presents the temperature and the velocity 
distributions in the melt at four different times in the 
course of the numerical simulation. The predictions 
are in excellent qualitative agreement with the exper- 
imental results [9, lo]. The melt entering the com- 
putational domain, at the boundary plane 4 = &,, 
forms a boundary layer along the surface of the 
source. This boundary layer and the one formed by 
the cooled melt along the interface are separated by a 
nearly stagnant core of isothermal melt. By comparing 
the flow and temperature fields in Figs. 6(c) and (d), 
it can be seen that the quasi-steady state had already 
been established in the vicinity of the source (with 
respect to the source). Continued melting only results 
in growth (elongation) of the stagnant core (due to 
descent of the source as well as motion of the interface) 

GRID OlSTRlBUTlCN STREAM FliNCllON TEMPERATURE CCNTOURS 

FIG. 5. Initial grid distribution, flow and temperature field. 
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(b) 

STREW FUNCTION TEMPERRTURE CONTOURS 

STRERM FUNCTION TEHPERRTURE CONTOURS 

STREAM FUNCTION TEMPERRTURE CONTOURS 

STREAM FLINC’IZN TEMPERRTURE CONTOURS 

FIG. 6. Flow pattern and temperature distributions at different times, t * = 0.135 (a); 0.269 (b); 0.404 (c); 

and 0.539 (d) for Se = 0.0724 and Ra = 286,000. 

and does not affect the boundary layer along the sur- 
face of the source. Examination of temporal variation 
of the angular variation of the heat transfer coefficient 
at the surface of the source revealed that the quasi- 
steady state has been reached over the heat source 
by f* = 0.404, which corresponds to the flow field 
presented in Fig. 6(c) [lo]. 

Figure 7 shows the interface position at the begin- 
ning (assumed) and also at selected times into the 

simulation. The gradual evolvement of the interface 
towards its quasi-steady state shape with respect to 
the source is illustrated in the figure. Due to the fact 
that the solid is not subcooled. the entire interface 
is not expected to attain a quasi-steady-state shape. 
However, after 180 s into the simulation (I* = 0.404), 
the interface in the vicinity of the source (at least up 
to 4 = 120”) had already reached its quasi-steady- 
state shape. The calculated interface shape is in good 
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---t- 
FIG. 7. Solid-liquid interface positions with respect to the 
source at different times for Ste = 0.0724, Rn = 286,000 

(solid lines) and Ra = 0 (dashed line). 

general agreement with the experimental observations 
[9. lo]. Extensive and localized melting around 
(b = 180” is common in both the experimental obser- 
vations [9, IO]. For the case of the stationary source, 
similar non-symmetric melting around the upper stag- 
nation point has also been observed [18, 191 which 
eventually resulted in formation of a ‘pear-like’ 
shaped solid-liquid interface. For a descending heat 
source, however, the extensive localized melting 
around 4 = 180’ which is clearly present at early times 
in the simulation does not seem to persist with time. 
The upward motion of the interface in the present 
study (due to the descent of the source) reduces the 
intensity of the interaction between the plume and the 
interface. Examination of the variation of the heat 
flux along the interface revealed that the position of 
maximum heat transfer coefficient changes with 
descent of the source and is not fixed at 180” as has 
been reported to be the case for the stationary source 
cases [18, 191. 

The effects of natural convection on the flow struc- 
ture in the melt pool as well as the motion of the 
interface were investigated by setting Ra = 0 deliber- 
ately, while keeping all the other parameters the same 
as in the standard case. The initial melt domain was 
chosen as shown in Fig. 5, and the initial flow field is 
displayed in Fig. 8(a). The streamlines and isotherms 
at three selected times into the simulation are also 
presented in Figs. 8(bt(d). These figures show that 
neglect of the buoyancy effects eliminates the driving 
force for melt recirculation and results in the dis- 
appearance of the stagnant, isothermal melt core. 
With no flow recirculation to comply with the velocity 
boundary condition at the interface, the streamlines 
diverge while entering the melt pool. No boundary 
layer is formed over the source nor along the interface, 

and the melt flow closely resembles flow over a cylin- 
der in an infinite medium for Re < 10 [20]. Absence 
of the boundary layer over the heat source results in 
large reduction in the heat transfer from the source 
(e.g. 42% reduction in K,) compared to the standard 
case. 

At the interface, however, neglect of natural con- 
vection in the melt results in an increase in the heat 
transfer to the interface near the source, while causing 
a decrease away from the source. The effect of this 
variation in heat transfer to the interface on its motion 
is illustrated in Fig. 7 where the interface positions at 
t* = 0.336 for Ste = 0.0724 are compared for the two 
values of Ra. This figure indicates that the indirect 
(convective) melting would be greatly underestimated 
if natural convection in the melt is not considered 
[note that the volume of the directly melted material 
(by conduction) is the same for both cases as IJt does 
not change by setting Ra = 0, Table 11. Therefore, it 
is concluded that natural convection is important (and 
should be included) in predicting flow structure in the 
melt pool as well as the interface motion. 

A melting simulation has been performed for 
Ste = 0.0358, and the results are compared with the 
standard case (with Ste = 0.0724) to examine the effect 
of the surface temperature of the source on the 
flow pattern in the melt pool as well as the interface 
motion. The melt flow structure [IO] is found to be 
similar to the base case, although melt recirculation 
is weaker here due to smaller Rayleigh number (i.e. 
Ra = 143,000 in this case compared to 286,000 for the 
base case). 

The pressure field in the melt pool was calculated 
as a part of the solution in region II. Comparison of 
the dimensionless pressure difference in the melt layer 
in region I (Table 1) shows that the pressure field in 
region II is quite uniform (Ap,,,,, = 7.0 x lo3 in region 
II compared with Ap = 3.03 x lo6 in region I). From 
the calculated velocity and pressure field in region II, 
the relative density of the source Ap/p was determined 
to be equal to 1.2996 after integration of equation 
(12). In Table 1, for the same set of parameters but 
with the assumptions that in region II pressure is 
constant and shear force on the surface of the source 
is negligible, Ap/p was calculated to be equal to 1.305. 
These assumptions cause only 0.4% error in the esti- 
mate of Ap/p and are thus well justified. 

The sensitivity of the solution to the initially 
assumed interface was examined in a simulation with 
a differential melt domain (i.e. 100% increase in melt 
pool height at 4 = 180”). A comparison of the tem- 
perature and flow fields calculated in this simulation, 
with those of the standard case [Figs. 8(c) and (d)] has 
revealed that the difference in the flow development 
is very small and is mostly confined to the stagnant, 
isothermal melt core. The maximum difference in the 
quasi-steady-state values of Nu, is less than 7% and 
occurs at z 150”. The quasi-steady-state shapes of 
the interface in the immediate vicinity of the source 
are the same for the two cases [lo]. 
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(a) (b) 

STRERn FDNCTION IEI1PERQTWE CUNTOURS 

STRERM FUNCTION TENPERRTURE CONTOURS 

SIRE!24 FUNCTIDN 

STRERH WNCTION 

TEfG%RRfURE CONTOURS 

iEHPERRTUAE CONTOURS 

FIG. 8. Flow pattern and temperature distribution at different times for Ste = 0.0724 and Ra = 0: t* = 0.0 
(a); 0.135 (b); 0.269 (c); and 0.404 (d). 

5. CONCLUSIONS 

An analysis has been developed to predict melting 
heat transfer around a migrating heat source by divid- 
ing the melt domain into two regions. Region I is the 
melt domain under the source where the melt layer 
thickness is very small and no recirculation takes 
place. In this region, the problem is governed by a set 
of parabohc equations. Region II occupies the rest of 
the melt domain where melt recirculation may take 
place and thus the governing equations are of the 
elliptic type. The results of numerical simulations were 
found to be in good agreement with the experimental 
observations, and thus justified the division of the 
melt into two regions. 

In region I, conduction was found to be the domi- 

nant mode of heat transfer between the source and 
the solid. The numerical results for region II indicated 
that the pressure and shear forces acting on the surface 
of the source in this region are essentially uniform. 
This suggests that the solution of the problem in 
region I is sufficient to determine the velocity of the 
source as a function of the Stefan number and the 
relative density of the source. 

The calculated Aow and temperature fields in region 
II were found to be in good qualitative agreement 
with the experimental observations. The melt flow in 
the wake of the source consisted of two boundary 
layers, one stretched over the heat source and the 
other along the solid-liquid interface. The formation 
of these boundary layers was Found to be a result of 
circulation by natural convection of the melt in the 



Analysis of melting around a moving heat source 1281 

melt pool above the heat source. The boundary-layer 
formation over the source isolated the source from 
the melt pool and interface away from it. As a result, 
the source and the solid-liquid interface in its immedi- 
ate vicinity reached their quasi-steady state not later 
than the time that boundary-layer formation of the 
newly melted material was completed on and over the 
source. 
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ANALYSE DE LA FUSION DUNE SOURCE DE CHALEUR MOBILE 

R&urn&On presente une analyse de simulation de la fusion autour dune source de chaleur mobile 
horizontale et cylindrique. A partir des observations experimentales, le domaine de fusion est divise en 
deux regions, celle de contact direct et celle du bain fondu. Deux modeles mathematiques sont formults et 
des procedures de resolution developpees. Les champs de temperature et de vitesse dans les deux regions 
sont calcults pour une temperature constante de la source et la vitesse resultante de la source, le mouvement 
et la forme de l’interface sont d&ermines. On s’interesse aux effets de la temperature de surface prescrite 
et de la densite de la source aussi bien qu’a l’influence de la convection naturelle dans le bain fondu. La 
structure de l’ecoulement, le mouvement et la forme de l’interface solide-liquide determines par le calcul 
sont en bon accord avec les observations experimentales quand la convection naturelle dans le bain de 

fusion est incluse dans le modtle. 

STUDIE UBER DAS SCHMELZEN AN EINER SIGH BEwEGENDEN WARMEQUELLE 

Zusammenfassung-Dieser Beitrag stellt eine Studie zur Simulierung des Warmeiibergangs beim Schmelzen 
an einer sich bewegenden horizontalen, zylindrischen Wlrmequelle vor. Beobachtungen beim Experiment 
zeigten, da5 das Schmelzgebiet in zwei Bereiche eingeteilt werden kann, namlich in das wlrmequellennehe 
Gebiet und das Gebiet des Schmelzbades. Es werden zwei mathematische Modelle aufgestellt und die 
entsprechenden Losungsverfahren angegeben. Das Temperatur- und das Striimungsfeld in den beiden 
Gebieten werden fiir eine konstante OberfIbhentemperatur der Warmequelle berechnet, die resultierende 
Geschwindigkeit der Wlrmequelle und die Bewegung und Gestalt der GrenzRbhe werden bestimmt. Die 
Effekte, die durch die aufgepragte ObertXchentemperatur der Quelle und seine Dichte entstehen, sowie 
der Einflu5 der natiirlichen Konvektion im Schmelzbad werden untersucht und dargestellt. Der berechnete 
Schmelzablauf und die Bewegung und Gestalt der Grenzflache zwischen fester und fliissiger Phase stimmen 
gut mit den Beobachtungen bei Experimenten i&rein, wenn die natiirliche Konvektion in der Schmelze 

im Model1 berticksichtigt wird. 
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AHAJlM3 nJIABJlEHM5l OKOJIO ,QBMXYLQEI-OC9 MCTOYHMKA TEFLJIA 

.hHoTaqm-npoBeneH0 MoneJlrrpOBaHMe TennonepeHoCa npa nmBJleHMH oK0no us~mymCrOCs lopu- 

3OHTa,,b"OrO,UM,,MHJ,pM'leCKO~O WCIO'IHMKB Ten."& 3KCnepHMCHrbl "OKaP~J1M. qT0 06JltiCrb ",l;lB;ICHMII 

pa3neneHa ~a nse ~CTM: 30~~ ~enoCpeuCTeeH~~Oro KotiTaKTa H 30~~ 60J1b1u0r0 06bem pacnxma. 

C~OpMy."~pOBaHbl L,BC MaTeMaTMSeCKMe MOLE,lH,LLW KOTOpbIX pii3pii6OTaHbI Me'lOilbl peI,JeHHR. nRJlR 

TeMnepaTypbl N Te’,eHHIl B 06eHX 3OHaX paCCYMTaHbl IUlll nOCTORHHOfi TeMnepaTypbl FIOBepXHOCW, 

MCTOVHNK~ Tenna H ero pe3ynbTupymueA CKOpOCTM; 0npeneneHbl CKOpOCTb IlBMlCHMR II +Op.MLl 

rpt,HRL(b, MEZKay 30HaMH. MCCJIenOBaHO B,lHIlHHe ?aLUHHOti TeMnepaTypbl nOBepXHOCTM MCTOSHHK3 H 

era HHTeHCMBH0CTH.Y TiiKYe CCTeCTBeHHOZi KOHBeKUMM B 06beMe piU_Y"J,2WL HatiaeHo, 'ST0 piiCCWTUl- 

Haa CTpyKTypa TNeHMIl pdC"JlaBa, a laK)Ke +OpMa H XapiiKTep ,!,BUxCHNR pLi3+UC:la lBCpi,OC ICJIO 

~KNLIKOCTbXOpOUlOCO~~~CyK)TCIIC3KC~epMMeHTOM"plly~CTeeCTeCTBCHHO~ KOHBeKUMI1 BpaC",UBe. 


